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Prior Methods

Distribution-shift based methods [1, 2, 3]

o  Shift the output distribution towards a subset of tokens in the vocabulary

o Statistically estimate the likelihood that the probability distribution has shifted
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Splitting ratio y
Pseudo random function

Hash of previous token as seed to partition vocabulary into red-green list
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Add 6 to all the green tokens to bias the distribution towards green-list



Prior Methods: Distribution-Shift Based Methods

Detection
o Null hypothesis that the next token is selected without the knowledge of green-red list rule, i.e.,
without addition of &

o  Given hash function, count the number of green tokens in the generation

Uslg=yT)

o Calculate the z-score, z =
VTy(1-y)
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Limitations

Face challenges in improving the semantics and detectability at the same time

m Improving one compromises the other

Lack adaptive mechanism to adjust y and § appropriately

« Ex:Sunrisesinthe . Itis ‘east’ with certainty. High 6 and low y might not select ‘east’.



Proposed Method

Propose learning token-specific splitting ratio and watermark logit, i.e., y; and é;
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Proposed Method

Propose learning token-specific splitting ratio and watermark logit

sCM) ) s(FD s© . stD »  Embeddings of st~
Prompt Generation till now /
G,y network

!

Ve 13



Proposed Method

Propose learning token-specific splitting ratio and watermark logit

sCM) (D s© gt » Embeddings of s(t—1

Prompt Generation till now / \

G,y network Gs: 6 network

! !

Ve Ot 14



Proposed Method

Differentiable sampling for splitting the vocabulary

o For each token v € VV, sample yff) ~ B(y:), Bernoulli distribution parameterized by y;.

o |If y,(f) = 1, then the token v belongs to green list else red list

o Gumbel softmax trick makes sampling process differentiable
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Proposed Method

Given original logits lff) for token v, modified logits after biasing the green-list tokens

A~

1 =119 +yPxs
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Proposed Method

Training objectives
o Detection loss

o Semantic loss
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Proposed Method

Detection loss

o Since we have a token-specific y; and §;, the z-score expression has to be updated based on

this distribution
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Proposed Method

Theorem: Consider T independent Bernoulli random variables X;, ..., Xy, each with means
Ui, o U, 0 < p<1Vtel,..T. The sum of these variables, }.,—, X;, follows a Poisson
binomial distribution. When T is sufficiently large, this distribution can be approximated by a

Gaussian distribution with mean: ¥T_, u, and variance: X.7_; u, (1 — p).
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Proposed Method

Is|lg=2T-1 vt
VI ve(-vp)

Modified Z-score = to account for varying y;

Detection loss
o Improve detectability by maximizing this objective

o However, |s|¢, count of green tokens, is non-differentiable w.r.t y; and é;
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Proposed Method

Detection loss

Z?;:l pé? _Z{=1 Yt
VI ey

, where p

o Propose differentiable surrogate Z = gr

is the probability of selecting a

green token.

o Maximize Z or minimize detection loss, L, = —Z
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Proposed Method

Semantic loss
o Generate sentence embeddings of texts before and after watermarking, i.e., s and s,, using the
SIMCSE model fy
o Maximize the cosine similarity between them, cosg;m(fo(s), fo(sw))

o Thus, minimize semantic loss, Lg = — cossim(f5(s), fo(sw))
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Proposed Method

Multi-objective Optimization

o  Optimizing for two competing loss functions Ly and Lg

min Ly (G, Gs) and min Lg(G,, Gs)
Gy,65 Gy,65

o Estimate pareto optimal solutions using multiple-gradient descent algorithm (MGDA) [5]

S e e EEEEE_—_————— ~
V4 . . . \
f Multiple-Gradient Descent Algorithm \
|
|
| Let gp and gs are the gradients of L, and Lg w.r.t (G, Gs) I
' I
: A" = argmingepoq ||/1gD +(1- /1)g5||2 I
|
|
I g=2gp+ (1 —-2)gs :
|
\ Update (G, Gs) using the gradient g I 23



Experimental Setup

e Main experiments
o C4 dataset
m Training split 6400, Validation split 500, Test split 500
o Generation length set to 200
e Z-score threshold is empirically determined on respective test sets

o Set z-score threshold to maintain FPR at 0% and 1%
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Results
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Comparison of the trade-off for semantic integrity and detectability of different methods applied to OPT-1.3B.
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Results

Method TPR @ 0% TPR @ 1% SimCSE
EXP-edit 0.922 0.996 0.655
EXP-edit {Top-k=50) 0.968 0.996 0.677
Ours (Top-k=50) 1.000 1.000 0.713

Comparison of our method with indistinguishable method - EXP-edit and its variant EXP-edit (Top-k=50).
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Results

Method | Generation (5) | Detection (s)
No Watermark 31220 -
KGW 1,827 0.7
SWEET 4030 0.127
EXP-edit 24693 155.045
SIR &.420 0.337
MultiBir 6. 500 0610
Ours 1.946 0. 166

Generation and detection speed on OPT-1.3B for generating 200 tokens, measured in seconds.

27



Results
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Performance of Ours (trained on OPT-1.3B) and KGW when applied to LLAMA2 7B, 13B, and 70B. ¢



Results
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Comparison of our method with KGW under dipper paraphrase attack (left) and copy-
paste-3 attack (right). Please refer to the paper for other attack results.
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Conclusions

Propose to adapt the watermark strength based on the semantics of the preceding
token

Propose a light-weight network to output token-specific y, and §;

Propose a differentiable surrogate of z-score metric for optimization

Optimize in a multi-objective optimization framework

Extensive experiments on various scenarios shows the efficacy of our proposed

method
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