

Token-Specific Watermarking with Enhanced Detectability and Semantic Coherence for Large Language Models

Mingjia Huo*

Sai Ashish Somayajula*

Youwei Liang

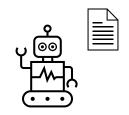
Ruisi Zhang

Farinaz Koushanfar

Pengtao Xie

University of California, San Diego

Detecting LLM Generated Texts



LLM generated

Detect

Academic dishonesty

Spam content

Misleading content

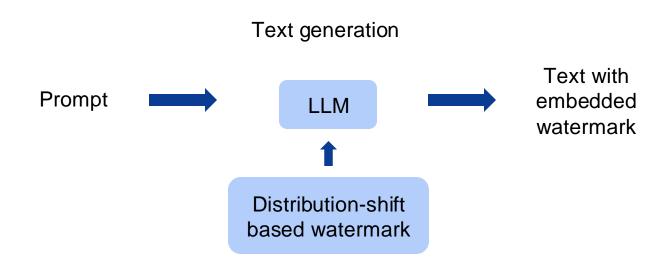
Training degeneration

Human generated

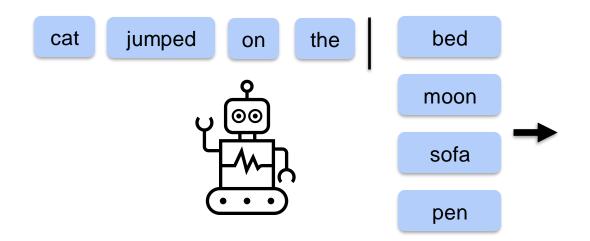
Prior Methods

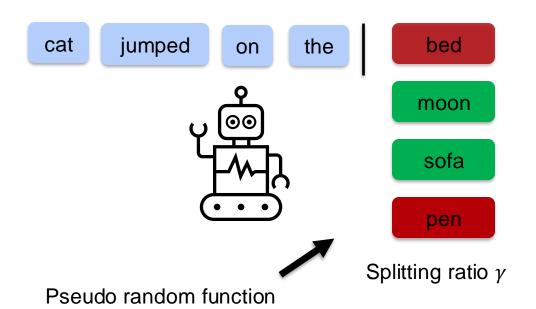
Distribution-shift based methods [1, 2, 3]

- Shift the output distribution towards a subset of tokens in the vocabulary
- Statistically estimate the likelihood that the probability distribution has shifted

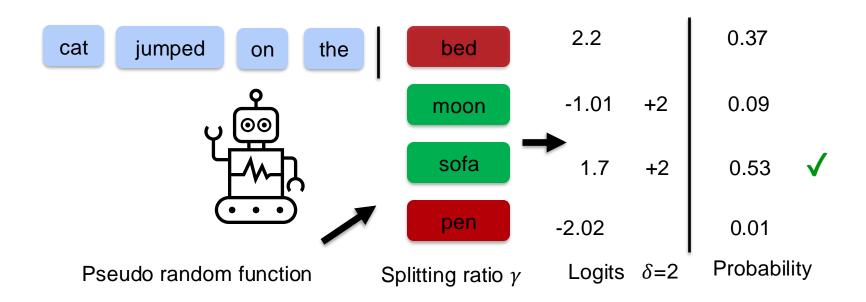


During the generation of tth token,





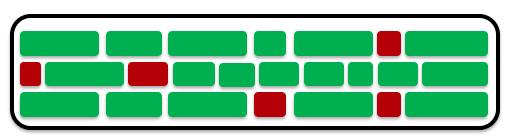
Hash of previous token as seed to partition vocabulary into red-green list



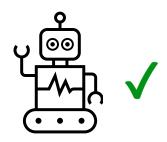
Add δ to all the green tokens to bias the distribution towards green-list

Detection

- \circ Null hypothesis that the next token is selected without the knowledge of green-red list rule, i.e., without addition of δ
- o Given hash function, count the number of green tokens in the generation
- Calculate the z-score, $z = \frac{(|s|_G \gamma T)}{\sqrt{T\gamma(1-\gamma)}}$



Z-score =
$$\frac{(|s|_G - \gamma T)}{\sqrt{T\gamma(1-\gamma)}}$$
 = 4



Z-score >
$$\tau$$
 (say 3)

Limitations

Face challenges in improving the semantics and detectability at the same time

Improving one compromises the other

Lack adaptive mechanism to adjust γ and δ appropriately

• Ex: Sun rises in the __. It is 'east' with certainty. High δ and low γ might not select 'east'.

Propose learning token-specific splitting ratio and watermark logit, i.e., γ_t and δ_t

Propose learning token-specific splitting ratio and watermark logit, i.e., γ_t and δ_t

$$S^{(-M)}, ..., S^{(-1)}$$
 $S^{(0)}, ..., S^{(t-1)}$

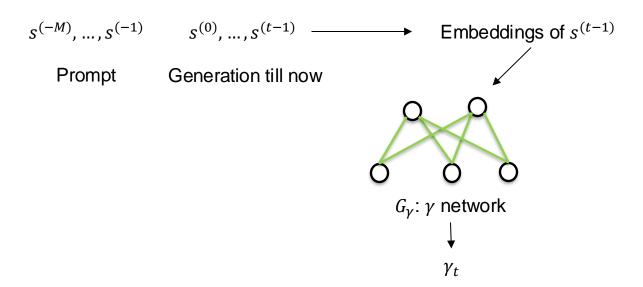
Prompt Generation till now

Propose learning token-specific splitting ratio and watermark logit

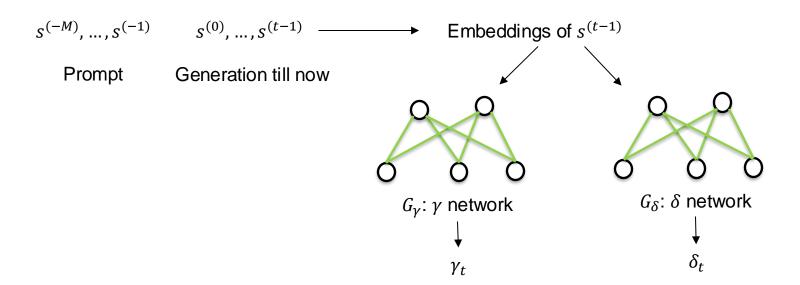
$$s^{(-M)}, ..., s^{(-1)}$$
 $s^{(0)}, ..., s^{(t-1)}$ Embeddings of $s^{(t-1)}$

Prompt Generation till now

Propose learning token-specific splitting ratio and watermark logit



Propose learning token-specific splitting ratio and watermark logit



Differentiable sampling for splitting the vocabulary

- For each token $v \in V$, sample $y_v^{(t)} \sim B(\gamma_t)$, Bernoulli distribution parameterized by γ_t .
- o If $y_v^{(t)} = 1$, then the token v belongs to green list else red list
- o Gumbel softmax trick makes sampling process differentiable

Given original logits $l_v^{(t)}$ for token v, modified logits after biasing the green-list tokens

$$\hat{\boldsymbol{l}}_{v}^{(t)} = l_{v}^{(t)} + y_{v}^{(t)} * \delta_{t}$$

Training objectives

- Detection loss
- Semantic loss

Detection loss

 \circ Since we have a token-specific γ_t and δ_t , the z-score expression has to be updated based on this distribution

Theorem: Consider T independent Bernoulli random variables X_1, \dots, X_T , each with means $\mu_1, \dots, \mu_T, 0 < \mu < 1 \ \forall \ t \in 1, \dots, T$. The sum of these variables, $\sum_{t=1}^T X_t$, follows a Poisson binomial distribution. When T is sufficiently large, this distribution can be approximated by a Gaussian distribution with mean: $\sum_{t=1}^T \mu_t$ and variance: $\sum_{t=1}^T \mu_t (1 - \mu_t)$.

Modified Z-score =
$$\frac{|s|_G - \sum_{t=1}^T \gamma_t}{\sqrt{\sum_{t=1}^T \gamma_t (1 - \gamma_t)}}$$
 to account for varying γ_t

Detection loss

- Improve detectability by maximizing this objective
- \circ However, $|s|_G$, count of green tokens, is non-differentiable w.r.t γ_t and δ_t

Detection loss

- Propose differentiable surrogate $\hat{z} = \frac{\sum_{t=1}^{T} p_{gr}^{(t)} \sum_{t=1}^{T} \gamma_t}{\sqrt{\sum_{t=1}^{T} \gamma_t (1-\gamma_t)}}$, where $p_{gr}^{(t)}$ is the probability of selecting a green token.
- Maximize \hat{z} or minimize detection loss, $L_D = -\hat{z}$

Semantic loss

- Generate sentence embeddings of texts before and after watermarking, i.e., s and s_w using the SimCSE model f_θ
- Maximize the cosine similarity between them, $\cos_{sim}(f_{\theta}(s), f_{\theta}(s_w))$
- Thus, minimize semantic loss, $L_S = -\cos_{sim}(f_{\theta}(s), f_{\theta}(s_w))$

Multi-objective Optimization

• Optimizing for two competing loss functions L_D and L_S

$$\min_{G_{\gamma},G_{\delta}} L_{D}(G_{\gamma},G_{\delta}) \text{ and } \min_{G_{\gamma},G_{\delta}} L_{S}(G_{\gamma},G_{\delta})$$

Estimate pareto optimal solutions using multiple-gradient descent algorithm (MGDA) [5]

Multiple-Gradient Descent Algorithm

Let g_D and g_S are the gradients of L_D and L_S w.r.t (G_γ, G_δ)

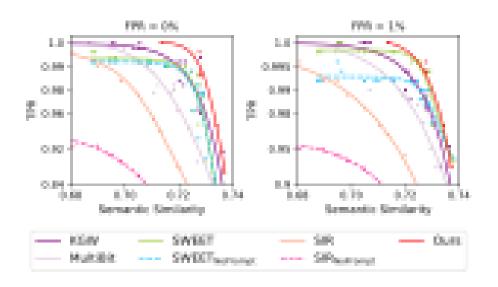
$$\lambda^* = \operatorname{argmin}_{\lambda \in [0,1]} \left| \left| \lambda g_D + (1 - \lambda) g_S \right| \right|_2$$

$$g = \lambda^* g_D + (1 - \lambda^*) g_S$$

Update (G_{γ}, G_{δ}) using the gradient g

Experimental Setup

- Main experiments
 - C4 dataset
 - Training split 6400, Validation split 500, Test split 500
 - Generation length set to 200
- Z-score threshold is empirically determined on respective test sets
 - Set z-score threshold to maintain FPR at 0% and 1%



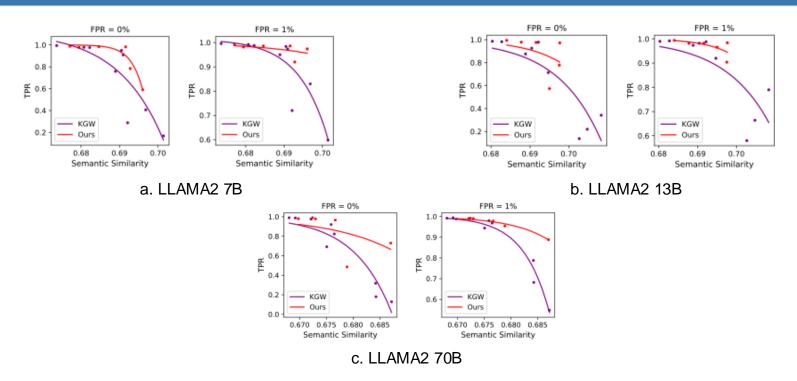
Comparison of the trade-off for semantic integrity and detectability of different methods applied to OPT-1.3B.

Method	TPR @ 0%	TPR @ 1%	SimCSE
EXP-edit	0.922	0.996	0.655
EXP-edit (Top-k=50)	0.968	0.996	0.677
Ours (Top- $k=50$)	1.000	1.000	0.713

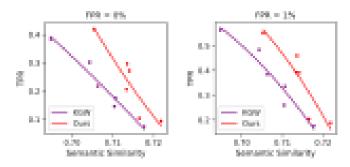
Comparison of our method with indistinguishable method - EXP-edit and its variant EXP-edit (Top-k=50).

Method	Generation (s)	Detection (s)
No Watermark	3.220	-
KGW	3.827	0.067
SWEET	4.030	0.127
EXP-edit	24.693	155.045
SIR	8.420	0.337
MultiBit	6.500	0.610
Ours	3.946	0.166

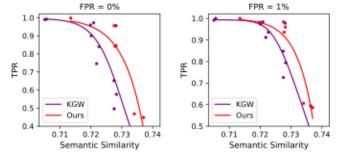
Generation and detection speed on OPT-1.3B for generating 200 tokens, measured in seconds.



Performance of Ours (trained on OPT-1.3B) and KGW when applied to LLAMA2 7B, 13B, and 70B.



a. Dipper paraphrase attack



b. Copy-Paste-3 attack

Comparison of our method with KGW under dipper paraphrase attack (left) and copypaste-3 attack (right). Please refer to the paper for other attack results.

Conclusions

- Propose to adapt the watermark strength based on the semantics of the preceding token
- Propose a light-weight network to output token-specific γ_t and δ_t
- Propose a differentiable surrogate of z-score metric for optimization
- Optimize in a multi-objective optimization framework
- Extensive experiments on various scenarios shows the efficacy of our proposed method

References

- [1] Kirchenbauer, John, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. "A watermark for large language models." In *International Conference on Machine Learning*, pp. 17061-17084. PMLR, 2023.
- [2] Lee, T., Hong, S., Ahn, J., Hong, I., Lee, H., Yun, S., Shin, J., and Kim, G. Who wrote this code? watermarking for code generation. *arXiv* preprint arXiv:2305.15060, 2023.
- [3] Liu, Aiwei, Leyi Pan, Xuming Hu, Shiao Meng, and Lijie Wen. "A semantic invariant robust watermark for large language models." *arXiv preprint arXiv:2310.06356* (2023).
- [4] Piet, Julien, Chawin Sitawarin, Vivian Fang, Norman Mu, and David Wagner. "Mark my words: Analyzing and evaluating language model watermarks." *arXiv preprint arXiv:2312.00273*(2023).
- [5] Sener, Ozan, and Vladlen Koltun. "Multi-task learning as multi-objective optimization." *Advances in neural information processing systems* 31 (2018).