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Prior Methods

Distribution-shift based methods [1, 2, 3]

○ Shift the output distribution towards a subset of tokens in the vocabulary

○ Statistically estimate the likelihood that the probability distribution has shifted
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Prior Methods: Distribution-Shift Based Methods
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Detection

○ Null hypothesis that the next token is selected without the knowledge of green-red list rule, i.e., 

without addition of δ

○ Given hash function, count the number of green tokens in the generation

○ Calculate the z-score, 𝑧 =
𝑠 𝐺−𝛾𝑇

√𝑇𝛾 1−𝛾

Z-score > 𝜏 (say 3)
Z-score = 

𝑠 𝐺−𝛾𝑇

√𝑇𝛾 1−𝛾
= 4



Limitations

Face challenges in improving the semantics and detectability at the same time

■ Improving one compromises the other

Lack adaptive mechanism to adjust 𝛾 and 𝛿 appropriately

• Ex: Sun rises in the __. It is ‘east’ with certainty. High 𝛿 and low 𝛾 might not select ‘east’.
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Proposed Method

Propose learning token-specific splitting ratio and watermark logit, i.e., 𝛾𝑡 and 𝛿𝑡
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Proposed Method

Differentiable sampling for splitting the vocabulary

○ For each token 𝑣 ∈ 𝑉, sample y𝑣
(𝑡)

∼ 𝐵 𝛾𝑡 , Bernoulli distribution parameterized by 𝛾𝑡.

○ If y𝑣
(𝑡)

= 1, then the token 𝑣 belongs to green list else red list

○ Gumbel softmax trick makes sampling process differentiable 
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Proposed Method

Given original logits 𝑙𝑣
(𝑡)

for token 𝑣, modified logits after biasing the green-list tokens 
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መ𝒍𝑣
(𝑡)

= 𝑙𝑣
(𝑡)

+ 𝑦𝑣
(𝑡)

∗ 𝛿𝑡



Proposed Method

Training objectives

○ Detection loss

○ Semantic loss
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Proposed Method

Detection loss

○ Since we have a token-specific 𝛾𝑡 and 𝛿𝑡, the z-score expression has to be updated based on 

this distribution
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Proposed Method

Theorem: Consider 𝑇 independent Bernoulli random variables 𝑋1, … , 𝑋𝑇, each with means 

𝜇1, … , 𝜇𝑇 , 0 < 𝜇 < 1 ∀ 𝑡 ∈ 1,… , 𝑇. The sum of these variables, σ𝑡=1𝑋𝑡, follows a Poisson 

binomial distribution. When 𝑇 is sufficiently large, this distribution can be approximated by a 

Gaussian distribution with mean: σ𝑡=1
𝑇 𝜇𝑡 and variance: σ𝑡=1

𝑇 𝜇𝑡(1 − 𝜇𝑡). 
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Proposed Method

Modified Z-score = 
|𝑠|𝐺−σ𝑡=1

𝑇 𝛾𝑡

√σ𝑡=1
𝑇 𝛾𝑡(1−𝛾𝑡)

to account for varying 𝛾𝑡

Detection loss 

○ Improve detectability by maximizing this objective

○ However, |𝑠|𝐺, count of green tokens, is non-differentiable w.r.t  𝛾𝑡 and 𝛿𝑡

20



Proposed Method

Detection loss

○ Propose differentiable surrogate Ƹ𝑧 =
σ𝑡=1
𝑇 𝑝𝑔𝑟

(𝑡)
−σ𝑡=1

𝑇 𝛾𝑡

√σ𝑡=1
𝑇 𝛾𝑡(1−𝛾𝑡)

, where 𝑝𝑔𝑟
(𝑡)

is the probability of selecting a 

green token. 

○ Maximize Ƹ𝑧 or minimize detection loss, 𝐿𝐷 = − Ƹ𝑧
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Proposed Method

Semantic loss

○ Generate sentence embeddings of texts before and after watermarking, i.e., 𝑠 and 𝑠𝑤 using the 

SimCSE model 𝑓𝜃

○ Maximize the cosine similarity between them, cos𝑠𝑖𝑚(𝑓𝜃 𝑠 , 𝑓𝜃(𝑠𝑤))

○ Thus, minimize semantic loss, 𝐿𝑆 = −cos𝑠𝑖𝑚(𝑓𝜃 𝑠 , 𝑓𝜃(𝑠𝑤))
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Proposed Method

Multi-objective Optimization

○ Optimizing for two competing loss functions 𝐿𝐷 and 𝐿𝑆

min 𝐿𝐷(𝐺𝛾, 𝐺𝛿)
𝐺𝛾,𝐺𝛿

and min 𝐿𝑆(𝐺𝛾, 𝐺𝛿)
𝐺𝛾,𝐺𝛿

○ Estimate pareto optimal solutions using multiple-gradient descent algorithm (MGDA) [5]
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Multiple-Gradient Descent Algorithm

Let 𝑔𝐷 and 𝑔𝑆 are the gradients of 𝐿𝐷 and 𝐿𝑆 w.r.t (𝐺𝛾, 𝐺𝛿)

𝜆∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜆∈[0,1] 𝜆𝑔𝐷 + 1 − 𝜆 𝑔𝑆 2

𝑔 = 𝜆∗𝑔𝐷 + 1 − 𝜆∗ 𝑔𝑆

Update (𝐺𝛾, 𝐺𝛿) using the gradient 𝑔



Experimental Setup

● Main experiments

○ C4 dataset

■ Training split 6400, Validation split 500, Test split 500

○ Generation length set to 200

● Z-score threshold is empirically determined on respective test sets

○ Set z-score threshold to maintain FPR at 0% and 1%
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Results
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Comparison of the trade-off for semantic integrity and detectability of different methods applied to OPT-1.3B.



Results
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Comparison of our method with indistinguishable method - EXP-edit and its variant EXP-edit (Top-k=50).



Results
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Generation and detection speed on OPT-1.3B for generating 200 tokens, measured in seconds. 



Results
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a. LLAMA2 7B b. LLAMA2 13B

c. LLAMA2 70B

Performance of Ours (trained on OPT-1.3B) and KGW when applied to LLAMA2 7B, 13B, and 70B.



Results
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a. Dipper paraphrase attack b. Copy-Paste-3 attack

Comparison of our method with KGW under dipper paraphrase attack (left) and copy-

paste-3 attack (right). Please refer to the paper for other attack results.



Conclusions

● Propose to adapt the watermark strength based on the semantics of the preceding 

token

● Propose a light-weight network to output token-specific 𝛾𝑡 and 𝛿𝑡

● Propose a differentiable surrogate of z-score metric for optimization

● Optimize in a multi-objective optimization framework

● Extensive experiments on various scenarios shows the efficacy of our proposed 

method
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