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Introduction

Pretrained language models (PLMs) have significantly improved the performance on 

various NLP tasks

Finetuning PLMs on low-resource texts poses significant challenges
○ High variance in performance for different final layer weight initializations

○ Prone to overfitting leading to poor generalization on test set
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Prior Methods

Encourage proximity to pretrained weights
○ Weight Decay [1], RecAdam [2], Top-K-layer Finetuning [3], Mixout [4]

○ Finetuning only a sub-network chosen based on empirical Fisher Information matrix (FIM)

■ Child-TuningD [5], DPS Dense [6]

■ Promising direction with improved results
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Prior Methods
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Empirical FIM-based sub-network selection: Green edges indicate weights that are 

finetuned on the downstream task, while red edges indicate frozen pretrained weights.



Limitations
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Low-resource scenarios
○ Data scarcity can skew the gradients used to compute the FIM, leading to sub-optimal sub-

network selection [7].

○ [8] theoretically shows that empirically determined FIM deviates significantly from the true FIM 

when sample size is low.



Method: Motivation
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Deviate from prior empirical FIM based selection.



Method: Motivation
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Many choices for sub-networks! How to select an optimal one?



Method: Motivation
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A combinatorial problem of selecting an optimal sub-network based on the performance on 

downstream task.



Method: Motivation
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Need for computationally efficient approach!



Method: Motivation

10Continuous optimization of sub-network and task-specific weights based on the downstream task performance



Method: Attention Guided Weights Mixup
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For a given sub-network, 𝑊! are the pretrained weights and 𝑊 are the task-specific 
weights

Weights on the red edges can be written as,

Weights on the green edges can be written as,

denotes the element-wise multiplication operation

𝟎⊙𝑊 + 𝟏⊙𝑊!

𝟏⊙𝑊 + 𝟎⊙𝑊!



Method: Attention Guided Weights Mixup
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!𝑊 = 𝑔 𝑊, 𝛼,𝑊! = 𝛼⊙𝑊 + 1 − 𝛼 𝑊!

○ Represent each weight as a linear interpolation of pretrained weight 𝑊! and task-specific weight 𝑊

○ α referred to ‘attention parameters’ in this work, determines the chosen sub-network 
■ If α = 1 then the corresponding weight belongs to the sub-network to be finetuned 

■ If α = 0 then the corresponding weight is assigned to the frozen pretrained weight 

○ 𝑊 depends on the chosen sub-network, i.e., α
○ In this formulation, 𝛼 ∈ [0,1] allowing a transition from discrete to continuous sub-network selection 



Method: Attention Guided Weights Mixup
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𝛼 ∈ [0,1]

○ 𝛼 ∈ 0,1
■ Continuous relaxation of sub-network selection

■ Edges are depicted in shades of red and green 

■ If 𝛼 closer to 0 then the corresponding weight has more influence of pre-trained weight and vice-versa

○ Goal is to learn 𝛼 that influences the sub-network and task-specific weights 𝑊



Method: Bi-Level Optimization

Learn 𝛼 and 𝑊, which are interdependent, to improve downstream task performance

○ Given a sub-network determined by 𝛼, learn 𝑊

○ Evaluate learned network determined by 𝑊, update 𝛼
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Method: Bi-Level Optimization

Learn 𝛼 and 𝑊, which are interdependent, to improve downstream task performance

○ Given a sub-network determined by 𝛼, learn 𝑊

○ Evaluate learned network determined by 𝑊, update 𝛼
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Bi-level optimization framework!



Method: Bi-Level Optimization
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Stage 1 – Given a sub-network determined by 𝛼, learn 𝑊 on the training split 

arg min
!

ℒ(𝑔 𝑊, 𝛼,𝑊" ; 𝒟B−tr) + 𝜆#||𝑊||$%

Training split 𝒟B−tr

Task weights 𝑊
as a function of 𝛼 𝑊∗(𝛼)



Method: Bi-Level Optimization
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Stage 2 – Evaluate learned network determined by 𝑊∗ 𝛼 on the validation split, update 𝛼

arg min
&

ℒ(𝑔 𝑊∗(𝛼), 𝛼,𝑊" ; 𝒟B−val) + 𝜆%||𝛼||$%

Validation split 𝒟B−val

Learned task weights 𝑊∗(𝛼)
𝛼∗



Method: Bi-Level Optimization
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s.t. 𝑊∗(𝛼)= arg min
#

ℒ(𝑔 𝑊, 𝛼,𝑊! ; 𝒟B−tr) + 𝜆$||𝑊||%&

min
'

ℒ(𝑔 𝑊∗(𝛼), 𝛼,𝑊! ; 𝒟B−val) + 𝜆&||𝛼||%&



Method: Bi-Level Optimization

Iteratively use one-step gradient descent and finite-difference approximation to solve the 

optimization [9]
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𝑊∗ 𝛼 ≈ 𝑊( = 𝑊 − 𝜂)∇*[ℒ(𝑔 𝑊, 𝛼,𝑊! ; 𝒟B−tr) + 𝜆$||𝑊||%& ]

𝛼∗ ≈ 𝛼( = 𝛼 − 𝜂'∇'[ℒ(𝑔 𝑊(, 𝛼,𝑊! ; 𝒟B−val) + 𝜆&||𝛼||%& ]



Method: Implementation Details

Use low-rank approximation of 𝛼, express as product of two rank 1 matrices

Split original training dataset in 4:1 ratio to obtain training 𝒟B−tr and validation splits 

𝒟B−val

Perform random sampling K times and average the learned 𝛼 and 𝑊 parameters to 

mitigate overfitting (K = {1, 2, 5})

Please refer to the paper for more details! 
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Results
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Comparison with FIM-based sub-network selection methods on low-resource scenarios

Comparison of Our Method with Vanilla, Child-TuningD, and DPS Dense Method Using BERT Large Across 300, 500, and 
1000 Training Data Splits: Averaged Evaluation Metrics Over Eight GLUE Datasets (Highest Performance in Each Row 

Indicated in Bold)



Results
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Comparison with parameter efficient finetuning (PEFT) methods on low-resource scenarios

Averaged Performance Across CoLA, RTE, STSB, and MRPC Datasets for Vanilla, Prompt 
Tuning, Prefix-Tuning, LoRA, and Our Method Using BERT Large in Low-Resource Scenarios with 

500 and 1000 Training Instances



Results
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Evaluation across various PLMs

Comparison of Our Method and Vanilla Finetuning on Five Popular PLMs: Evaluation Over Ten Runs with Different Random 
Seeds, Reported as Mean and Standard Deviation. Average Score Represents Performance Across Four Datasets. Best 

Scores Highlighted in Bold, Underlined Values Indicate Degenerate Seeds



Results

24

Comparison with other prior methods

Comparison of Our Method with Other Regularization Methods on Four Small Datasets (CoLA, RTE, MRPC, STSB): Mean 
and Standard Deviation of Ten Random Seeds Reported for Each Method. Bold Indicates Best Performance. Double-Sided 

T-Tests Show Statistically Significant Improvement (p < 0.05) Over Vanilla. Baseline Results from DPS Dense [6]



Conclusions
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Deviate from prior FIM-based sub-network selection which is sub-optimal in low-resource 

scenarios

Attention-guided weights mixup strategy for continuous relaxation of sub-network selection 

and task weights estimation

Bi-level optimization framework to optimize both 𝑊 and 𝛼 on different splits of training data

Outperforms various baselines on low-resource scenarios 

Demonstrates improved stability across PLM architectures



Future Works
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Potential in continual learning

Our method could help models retain old knowledge while learning new tasks.
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