
Generalizable and Stable Finetuning of Pretrained Language Models on
Low-Resource Texts

Sai Ashish Somayajula Youwei Liang Li Zhang Abhishek Singh Pengtao Xie

University of California, San Diego

1

Introduction

Pretrained language models (PLMs) have significantly improved the performance on

various NLP tasks

Finetuning PLMs on low-resource texts poses significant challenges
○ High variance in performance for different final layer weight initializations

○ Prone to overfitting leading to poor generalization on test set

2

Prior Methods

Encourage proximity to pretrained weights
○ Weight Decay [1], RecAdam [2], Top-K-layer Finetuning [3], Mixout [4]

○ Finetuning only a sub-network chosen based on empirical Fisher Information matrix (FIM)

■ Child-TuningD [5], DPS Dense [6]

■ Promising direction with improved results

3

Prior Methods

4

Empirical FIM-based sub-network selection: Green edges indicate weights that are

finetuned on the downstream task, while red edges indicate frozen pretrained weights.

Limitations

5

Low-resource scenarios
○ Data scarcity can skew the gradients used to compute the FIM, leading to sub-optimal sub-

network selection [7].

○ [8] theoretically shows that empirically determined FIM deviates significantly from the true FIM

when sample size is low.

Method: Motivation

6

Deviate from prior empirical FIM based selection.

Method: Motivation

7

Many choices for sub-networks! How to select an optimal one?

Method: Motivation

8
A combinatorial problem of selecting an optimal sub-network based on the performance on

downstream task.

Method: Motivation

9

Need for computationally efficient approach!

Method: Motivation

10Continuous optimization of sub-network and task-specific weights based on the downstream task performance

Method: Attention Guided Weights Mixup

11

For a given sub-network, 𝑊! are the pretrained weights and 𝑊 are the task-specific
weights

Weights on the red edges can be written as,

Weights on the green edges can be written as,

denotes the element-wise multiplication operation

𝟎⊙𝑊 + 𝟏⊙𝑊!

𝟏⊙𝑊 + 𝟎⊙𝑊!

Method: Attention Guided Weights Mixup

12

!𝑊 = 𝑔 𝑊, 𝛼,𝑊! = 𝛼⊙𝑊 + 1 − 𝛼 𝑊!

○ Represent each weight as a linear interpolation of pretrained weight 𝑊! and task-specific weight 𝑊

○ α referred to ‘attention parameters’ in this work, determines the chosen sub-network
■ If α = 1 then the corresponding weight belongs to the sub-network to be finetuned

■ If α = 0 then the corresponding weight is assigned to the frozen pretrained weight

○ 𝑊 depends on the chosen sub-network, i.e., α
○ In this formulation, 𝛼 ∈ [0,1] allowing a transition from discrete to continuous sub-network selection

Method: Attention Guided Weights Mixup

13

𝛼 ∈ [0,1]

○ 𝛼 ∈ 0,1
■ Continuous relaxation of sub-network selection

■ Edges are depicted in shades of red and green

■ If 𝛼 closer to 0 then the corresponding weight has more influence of pre-trained weight and vice-versa

○ Goal is to learn 𝛼 that influences the sub-network and task-specific weights 𝑊

Method: Bi-Level Optimization

Learn 𝛼 and 𝑊, which are interdependent, to improve downstream task performance

○ Given a sub-network determined by 𝛼, learn 𝑊

○ Evaluate learned network determined by 𝑊, update 𝛼

14

Method: Bi-Level Optimization

Learn 𝛼 and 𝑊, which are interdependent, to improve downstream task performance

○ Given a sub-network determined by 𝛼, learn 𝑊

○ Evaluate learned network determined by 𝑊, update 𝛼

15

Bi-level optimization framework!

Method: Bi-Level Optimization

16

Stage 1 – Given a sub-network determined by 𝛼, learn 𝑊 on the training split

arg min
!

ℒ(𝑔 𝑊, 𝛼,𝑊" ; 𝒟B−tr) + 𝜆#||𝑊||$%

Training split 𝒟B−tr

Task weights 𝑊
as a function of 𝛼 𝑊∗(𝛼)

Method: Bi-Level Optimization

17

Stage 2 – Evaluate learned network determined by 𝑊∗ 𝛼 on the validation split, update 𝛼

arg min
&

ℒ(𝑔 𝑊∗(𝛼), 𝛼,𝑊" ; 𝒟B−val) + 𝜆%||𝛼||$%

Validation split 𝒟B−val

Learned task weights 𝑊∗(𝛼)
𝛼∗

Method: Bi-Level Optimization

18

s.t. 𝑊∗(𝛼)= arg min
#

ℒ(𝑔 𝑊, 𝛼,𝑊! ; 𝒟B−tr) + 𝜆$||𝑊||%&

min
'

ℒ(𝑔 𝑊∗(𝛼), 𝛼,𝑊! ; 𝒟B−val) + 𝜆&||𝛼||%&

Method: Bi-Level Optimization

Iteratively use one-step gradient descent and finite-difference approximation to solve the

optimization [9]

19

𝑊∗ 𝛼 ≈ 𝑊(= 𝑊 − 𝜂)∇*[ℒ(𝑔 𝑊, 𝛼,𝑊! ; 𝒟B−tr) + 𝜆$||𝑊||%&]

𝛼∗ ≈ 𝛼(= 𝛼 − 𝜂'∇'[ℒ(𝑔 𝑊(, 𝛼,𝑊! ; 𝒟B−val) + 𝜆&||𝛼||%&]

Method: Implementation Details

Use low-rank approximation of 𝛼, express as product of two rank 1 matrices

Split original training dataset in 4:1 ratio to obtain training 𝒟B−tr and validation splits

𝒟B−val

Perform random sampling K times and average the learned 𝛼 and 𝑊 parameters to

mitigate overfitting (K = {1, 2, 5})

Please refer to the paper for more details!
20

Results

21

Comparison with FIM-based sub-network selection methods on low-resource scenarios

Comparison of Our Method with Vanilla, Child-TuningD, and DPS Dense Method Using BERT Large Across 300, 500, and
1000 Training Data Splits: Averaged Evaluation Metrics Over Eight GLUE Datasets (Highest Performance in Each Row

Indicated in Bold)

Results

22

Comparison with parameter efficient finetuning (PEFT) methods on low-resource scenarios

Averaged Performance Across CoLA, RTE, STSB, and MRPC Datasets for Vanilla, Prompt
Tuning, Prefix-Tuning, LoRA, and Our Method Using BERT Large in Low-Resource Scenarios with

500 and 1000 Training Instances

Results

23

Evaluation across various PLMs

Comparison of Our Method and Vanilla Finetuning on Five Popular PLMs: Evaluation Over Ten Runs with Different Random
Seeds, Reported as Mean and Standard Deviation. Average Score Represents Performance Across Four Datasets. Best

Scores Highlighted in Bold, Underlined Values Indicate Degenerate Seeds

Results

24

Comparison with other prior methods

Comparison of Our Method with Other Regularization Methods on Four Small Datasets (CoLA, RTE, MRPC, STSB): Mean
and Standard Deviation of Ten Random Seeds Reported for Each Method. Bold Indicates Best Performance. Double-Sided

T-Tests Show Statistically Significant Improvement (p < 0.05) Over Vanilla. Baseline Results from DPS Dense [6]

Conclusions

25

Deviate from prior FIM-based sub-network selection which is sub-optimal in low-resource

scenarios

Attention-guided weights mixup strategy for continuous relaxation of sub-network selection

and task weights estimation

Bi-level optimization framework to optimize both 𝑊 and 𝛼 on different splits of training data

Outperforms various baselines on low-resource scenarios

Demonstrates improved stability across PLM architectures

Future Works

26

Potential in continual learning

Our method could help models retain old knowledge while learning new tasks.

References

[1] Daumé III, Hal. "Frustratingly easy domain adaptation." arXiv preprint arXiv:0907.1815 (2009).
[2] Chen, Sanyuan, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and Xiangzhan Yu. "Recall and
learn: Fine-tuning deep pretrained language models with less forgetting." arXiv preprint
arXiv:2004.12651 (2020).
[3] Houlsby, Neil, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. "Parameter-efficient transfer learning for NLP." In
International conference on machine learning, pp. 2790-2799. PMLR, 2019.
[4] Lee, Cheolhyoung, Kyunghyun Cho, and Wanmo Kang. "Mixout: Effective regularization to finetune
large-scale pretrained language models." arXiv preprint arXiv:1909.11299 (2019).
[5] Xu, Runxin, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan, Baobao Chang, Songfang Huang, and Fei
Huang. "Raise a child in large language model: Towards effective and generalizable fine-tuning." arXiv
preprint arXiv:2109.05687 (2021).
[6] Zhang, Haojie, Ge Li, Jia Li, Zhongjin Zhang, Yuqi Zhu, and Zhi Jin. "Fine-tuning pre-trained language
models effectively by optimizing subnetworks adaptively." Advances in Neural Information Processing
Systems 35 (2022): 21442-21454. 27

References

[7] Kunstner, Frederik, Philipp Hennig, and Lukas Balles. "Limitations of the empirical fisher
approximation for natural gradient descent." Advances in neural information processing systems 32
(2019).
[8] Soen, Alexander, and Ke Sun. "On the variance of the Fisher information for deep learning."
Advances in Neural Information Processing Systems 34 (2021): 5708-5719.
[9] Choe, Sang Keun, Willie Neiswanger, Pengtao Xie, and Eric Xing. "Betty: An automatic differentiation
library for multilevel optimization." arXiv preprint arXiv:2207.02849 (2022).

28

