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» Pretrained language models (PLMs) have significantly improved the
performance on various NLP tasks
» Finetuning PLMs on low-resource texts poses significant challenges

— High variance in performance for different final layer weight initializations
— Prone to overfitting leading to poor generalization on test set

Prior Methods

» Finetuning only a sub-network chosen based on empirical Fisher
Information matrix (FIM)
— Child-Tuningp, DPS Dense
— Promising direction with improved results
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» Limitation of empirical FIM in low-resource scenarios
— Data scarcity can skew the gradients used to compute the FIM

— Theoretical results claiming empirically determined FIM deviates
significantly from the true FIM when sample size is low

Proposed Method

» Deviate from FIM-based sub-network selection
» Downstream task performance guided sub-network selection
the task-specific weights on training dataset
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Given a sub-network (set of green edges), learn

I Gradient based-optimization
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Evaluate on a held-out set
and update the sub-network

Evaluate on downstream task
90% \/ 80% 70%

Many choices for sub-networks!

Attention-Guided Weights Mixup
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W=g(W,a,WO) =aOW+ (1 —-a)lW,

» Linear interpolation of pretrained weight W, and task-specific weight W

» « the "attention parameters’, determine the chosen sub-network
— a = 1: Weight in sub-network
— a = 0: Frozen pretrained weight

» «a € |0,1] allowing a transition to continuous sub-network selection
— «a closer to 0: Greater influence from pretrained weight and vice-versa
— Edges are depicted in shades of red and green

Bi-Level Optimization (BLO) Framework

» Learn a and W, which are interdependent, to improve downstream
task performance
— Stage 1: Given a sub-network determined by «a, learn W*(a)
— Stage 2: Evaluate learned network determined by W*(«a), learn a*
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Stage 2: Evaluate on validation split and
update «a

Stage 1: Learn W on the train split
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Optimization Algorithm
» Use one-step gradient descent and finite difference approximation

W*(a) * W' =W — 1, Vw[L(g(W, a, W,); DB 4 A, [[W[]2]
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Experimental Results

Training split Vanilla CHILD-TUNINGp DPS Dense Ours
300 62.54 4+ 6.57 6247 £5.5 61.69 +£5.62 68.97 + 3.09
500 65.85 + 4.57 68.35 +4.36 68.99 +2.92 7242 +2.14
1000 73.19 £+ 2.62 74.07 £ 2.75 75.00 £1.61 76.68 + 1.58

Table 1. Comparison of our method with vanilla, and prior FIM-based methods using
BERT large across 300, 500, and 1000 training data splits: Averaged evaluation metrics
over eight GLUE datasets

Models Methods CoLA MRPC RTE STSB Average
Mean Std Mean Std Mean Std Mean Std Mean Std

BERT Vanilla 64.11 1.33  90.80 1.77 70.69 283 89.92 0.61 78.88 1.64

Ours 66.07 1.35 91.84 0.37 7343 1.52  90.34 048 80.42(+1.54) 0.93(-0.71)
BART Vanilla 58.54 1.41 92.03 0.73 81.84 1.41 91.54 0.40 80.99 0.99

Ours 60.15 0.81 9233 040 8426 054 9220 0.09 82.23(+1.24) 0.46(-0.53)
RoBERTa Vanilla 66.06 2.07 9225 057 7852 13.01 91.89 0.31 82.18 3.99

Ours 66.52 145 9258 048 84.22 144 9221 0.08 83.88(+1.70) 0.86(-3.13)
DeBERTA Vanilla 63.74 1.34 9231 0.37 85.59 1.58 91.74 0.17 83.34 0.86

Ours 65.96 1.15 9232 0.28 86.17 1.47 9199 0.15 84.11(+0.77) 0.76(-0.10)
XT_Net Vanilla 4093 27.28 91.83 091 71.17 1440 91.68 0.19 73.90 10.69

Ours 61.66 195 92.19 0.38 83.54 144 9212 0.08 82.38(+8.48) 0.96(-9.73)

Table 2: Comparison of our method and vanilla finetuning on five PLMs over ten runs.
Underlined values indicate occurrence of degenerate seeds

Methods CoLA MRPC RTE STSB Average
Mean Std Mean Std Mean Std Mean Std Mean @ Std
Vanilla 64.11 133 90.80 1.77 70.69 283 8992 0.61 7888 1.64
Mixout 6442 151 91.31 1.08 7205 1.67 9039 0.57 7954 1.21
R3F 6462 138 91.63 093 70.75 1.76 8992 0.61 79.23 1.17
R-Dropout 6414 158 91.87 0.78 7024 283 9025 049 79.13 142
CHILD-TUNINGp 6485 132 9152 081 71.69 195 9042 044 79.62 1.13
Re-init 6424 203 91.61 080 7244 1.74 90.71 0.14 79.75 1.18
DPS Dense 6498 1.08 91.50 083 73.14 197 9051 0.55 80.03 1.11
DPS Dense (Our run) 64.08 1.50 90.25 221 7192 145 9020 047 79.11 141
Ours 66.07 135 91.84 037 7343 152 9034 048 8042 0.93

Table 3: Comparison of our method with other regularization-based approaches on four
small datasets (CoLA, RTE, STSB, and MRPC) known for causing instability in BERT
large models. Mean and standard deviation over ten runs reported

Method Mean | Std
= 500 =1000

75 Ours 80.42 | 0.93
70 Vanilla 78.88 | 1.64
65 Joint Training | 78.86 | 1.48

60 Random,,
95 -. oo =0.005 | 79.36 | 1.03
S0 Vanilla  Prompt Tuning Prefix-Tuning LoRA Ours Oa = 0.1 78.32 2.27
0q =0.45 69.29 | 5.44

Figure1: Averaged performance across CoLA,
RTE, STSB, and MRPC for vanilla, prompt
tuning, prefix-tuning, LoRA, and our method
using BERT large

Conclusions

» Propose an attention-guided weights mixup strategy

» Introduce BLO framework to optimize both task weights (W) and
attention parameters (a) using different splits of training data

» Demonstrate superior performance over various baselines in low-
resource settings

Improved stability across various PLM architectures
Potential applications in continual learning

Table 4: Ablation studies to
understand the impact of using
BLO and learning a
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