
Generalizable and Stable Finetuning of Pretrained Language 
Models on Low-Resource Texts

Sai Ashish Somayajula, Youwei Liang, Li Zhang, Abhishek Singh, Pengtao Xie
{ssomayaj, youwei, p1xie}@ucsd.edu

Scan me

Ø Pretrained language models (PLMs) have significantly improved the 
performance on various NLP tasks

Ø Finetuning PLMs on low-resource texts poses significant challenges
– High variance in performance for different final layer weight initializations
– Prone to overfitting leading to poor generalization on test set

Prior Methods

Green edges: Weights 
finetuned on the task, 
estimated using FIM
 
Red edges: Frozen 
pretrained weights

Motivation

Proposed Method

Ø Finetuning only a sub-network chosen based on empirical Fisher 
Information matrix (FIM)

– Child-TuningD, DPS Dense
– Promising direction with improved results

Ø Limitation of empirical FIM in low-resource scenarios
– Data scarcity can skew the gradients used to compute the FIM
– Theoretical results claiming empirically determined FIM deviates 

significantly from the true FIM when sample size is low

Ø Deviate from FIM-based sub-network selection
Ø Downstream task performance guided sub-network selection

Attention-Guided Weights Mixup

Ø Linear interpolation of pretrained weight 𝑊! and task-specific weight 𝑊
Ø 𝛼 the ‘attention parameters’, determine the chosen sub-network

– 𝛼 = 1: Weight in sub-network
– 𝛼 = 0: Frozen pretrained weight

Ø 𝛼 ∈ [0,1] allowing a transition to continuous sub-network selection
– 𝛼 closer to 0: Greater influence from pretrained weight and vice-versa
– Edges are depicted in shades of red and green

Bi-Level Optimization (BLO) Framework
Ø Learn 𝛼	and 𝑊, which are interdependent, to improve downstream 

task performance
– Stage 1: Given a sub-network determined by 𝛼, learn 𝑊∗(𝛼)
– Stage 2: Evaluate learned network determined by 𝑊∗(𝛼), learn 𝛼∗

… …

Evaluate on downstream task 
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Given a sub-network (set of green edges), learn 
the task-specific weights on training dataset

Gradient based-optimization

Evaluate on a held-out set 
and update the sub-networkMany choices for sub-networks! 

*𝑊 = 𝑔 𝑊, 𝛼,𝑊! = 𝛼 ⊙𝑊 + 1 − 𝛼 𝑊!

arg	min
!

	[	ℒ(𝑔 𝑊∗(𝛼), 𝛼,𝑊# ; 𝒟B−val)
+𝜆$||𝛼||%$ 	]

Stage 2: Evaluate on validation split and 
update 𝛼

arg	min
&

	[	ℒ(𝑔 𝑊, 𝛼,𝑊# ; 𝒟B−tr)
+𝜆'||𝑊||%$ 	]

Stage 1: Learn 𝑊 on the train split

Iterative 
updates

Experimental Results

Table 1: Comparison of our method with vanilla, and prior FIM-based methods using 
BERT large across 300, 500, and 1000 training data splits: Averaged evaluation metrics 

over eight GLUE datasets

Table 2: Comparison of our method and vanilla finetuning on five PLMs over ten runs. 
Underlined values indicate occurrence of degenerate seeds

Table 3: Comparison of our method with other regularization-based approaches on four 
small datasets (CoLA, RTE, STSB, and MRPC) known for causing instability in BERT 

large models. Mean and standard deviation over ten runs reported

Table 4: Ablation studies to 
understand the impact of using 

BLO and learning α

Figure1: Averaged performance across CoLA, 
RTE, STSB, and MRPC for vanilla, prompt 

tuning, prefix-tuning, LoRA, and our method 
using BERT large

Ø Propose an attention-guided weights mixup strategy 
Ø Introduce BLO framework to optimize both task weights (𝑊) and 

attention parameters (𝛼) using different splits of training data
Ø Demonstrate superior performance over various baselines in low-

resource settings 
Ø Improved stability across various PLM architectures
Ø Potential applications in continual learning

Conclusions

Optimization Algorithm
Ø Use one-step gradient descent and finite difference approximation

s.t.	 𝑊∗(𝛼)= arg	min
#

ℒ(𝑔 𝑊, 𝛼,𝑊! ; 𝒟B−tr) + 𝜆$||𝑊||%&
min
'
	 ℒ(𝑔 𝑊∗(𝛼), 𝛼,𝑊! ; 𝒟B−val) + 𝜆&||𝛼||%&

𝛼 ∈ 0,1

𝑊∗ 𝛼 ≈ 𝑊( = 𝑊 − 𝜂)∇*[ℒ(𝑔 𝑊, 𝛼,𝑊! ; 𝒟B−tr) + 𝜆$||𝑊||%& ]

𝛼∗ ≈ 𝛼( = 𝛼 − 𝜂'∇'[ℒ(𝑔 𝑊(, 𝛼,𝑊! ; 𝒟B−val) + 𝜆&||𝛼||%& ]


